
Using Traceability for Incremental Construction and
Evolution of Software Product Portfolios

Lukas Linsbauer, Stefan Fischer, Roberto E. Lopez-Herrejon and Alexander Egyed
Johannes Kepler University

Linz, Austria
{lukas.linsbauer, stefan.fischer, roberto.lopez, alexander.egyed}@jku.at

Abstract—Software reuse has become mandatory for compa-
nies to compete and a wide range of reuse techniques are available
today. Despite the great benefits of these techniques, they also
have the disadvantage that they do not necessarily support the
creation and evolution of closely related products – products
that are customized to different infrastructures, ecosystems,
machinery, or customers. In this paper we outline an approach
for incrementally constructing and evolving software product
portfolios of similar product variants. An initial proof of concept
demonstrates its feasibility.

I. INTRODUCTION

Many companies do not build one-of-a-kind software prod-
ucts. Rather they build a portfolio of similar products, often
tailored to different customer needs, machinery, ecosystems,
or other infrastructures. The number of product variants is
variable but in our experience we have observed anything
between a handful and 1000+ variants and correspondingly
large code sizes. These product variants share a high degree
of common functionality (i.e. features) but still differ. Software
Product Lines (SPLs) are meant to address this problem
by providing a single, configurable system from which all
desired product variants can be derived. Unfortunately, SPLs
require considerable upfront investments [1]. Moreover, due
to continuing technological changes it is impossible to predict
all the product variants required in the future nor is it possible
to avoid frequent evolutionary changes – both still open
challenges for current SPL approaches [2].

In practice we rarely observed full-blown SPLs. Instead,
we found that companies often resorted to an ad-hoc practices
generally referred to as clone-and-own. In clone-and-own, a
new product variant is created by modifying existing variants
that closely match the new variant’s needs while copy and past-
ing from other variants as needed. Clone-and-own has three
informal steps: 1) locating reusable artifacts (e.g. code) in the
existing variants and 2) copying/merging those artifacts that
closest match the requirements into a new product variant, 3)
adapting the new product variant to account for requirements
that did not exist thus far in any existing variant.

While building new product variants is a considerable
challenge, maintaining the existing ones is even more so.
Companies that practice clone-and-own usually do not keep
track of the copying of code, which makes it harder to take
advantage of reuse opportunities. Furthermore, the modifica-
tion of a feature (e.g. bug fix) needs to be applied to all variants

which share that feature. Each modified variant then has to be
re-tested and possibly re-deployed manually at some remote
customer site, infrastructure, or machinery.

In this paper we propose an approach for constructing,
maintaining, and evolving a software products portfolio con-
sisting of an arbitrary number of variants. The novelty of
our approach is that it provides a bridge between the ad-hoc
clone-and-own and a meticulously planned SPL, by leveraging
their respective advantages and mitigating their drawbacks. At
its core, our approach relies on traceability information that
maps features and feature interactions (the building blocks
of the system variants) to the artifacts that implement them.
No upfront investment is necessary, because companies almost
always have an existing portfolio of variants and our approach
supports a one-time automated initialization of pre-existing
variants. Once initialized, the approach is incremental where
an engineer may create a new variant, based on automated
reuse from existing variants that our approach provides. Man-
ual finalization of a product variant is guided by hints that our
approach generates if the automated reuse is not capable of
completing the desired product. A finalized product may then
be added to our approach such that its manual modifications
become reusable downstream. The more products are added,
the more complete and correct the approach becomes. The
advantage of our approach is that developers do not have to
change their development practices. Software engineers can
continue to develop single product variants the way they are
used to but get automated support in doing so. However,
they can also modify the entire portfolio of variants if they
like (e.g. bug fix across multiple variants) instead of having
to do so separately for each variant. Our approach assumes
that product variants exhibit similar code structures (i.e. a
common architecture) which is a valid assumption based on
our experiences thus far (SPLs also make this assumption).

We performed an evaluation on parts of our approach in our
previous work [3]. This paper gives a broader vision of our
intended work flow and differs from and extends our previous
work in the evolution of features and product variants.

II. APPROACH ARCHITECTURE

This section presents our incremental approach for creating,
maintaining, and evolving product portfolios. Figure 1 pro-
vides a high level overview of its four major workflow cycles.
The first cycle initializes the system based on existing product

variants (if available), it extracts traces between features and
feature interactions and their implementing artifacts across the
existing variants. The second cycle constructs product variants
based on previously extracted information. Since composing
new product variants that did not exist beforehand may result
in partially incomplete composed variants, human effort may
be required to finalize them. Here our approach automatically
composes the parts that do exist and provides hints for the
parts that need adaptation. Once a human has finalized a
product variant, the third cycle allows the finalized variant
to be extracted back in order to extend the product portfolio
for future use. The extension is not just an incremental form
of the initialization but is complicated by the existence of
evolutionary changes between variants. Finally, the fourth
cycle allows a human modifying the extracted product portfolio
directly (e.g. applying a bug fix to a feature) to then auto-
matically recompose all the affected product variants (rather
than fixing all products separately). The modification may
have two forms: 1) modifying the knowledge base directly
or 2) modifying a single variant and then updating/replacing
the older variant in the knowledge base. The Initialization is
an optional first step in case of pre-existing product variants.
Construction, Extension, and Modification are then arbitrarily
repeatable steps to incrementally evolve the product portfolio.

Evolving

Knowledge

Base

 3
 2

Traceability

Extraction

 1

Composition

Composition

HumanHuman

 3'
 2' Traceability

Extraction

 4'

 4
+Hints

Initialization (1) Construction (2)

Modification (4) Extension (3)

 3
 2

 1

Fig. 1: Cycles Overview

At the core of our approach is an evolving knowledge
base of reusable artifacts and traces to the features or feature
interactions they implement. The two major components then
populate and use this knowledge base: i) Traceability Ex-
traction automatically extracts traces among the features and
artifacts (e.g. between features, source code, configurations,
test cases, or design) complete with dependencies, variability
models and other useful information, and ii) Composition
automatically composes new product variants by selecting
from their features. We argue that the extraction and com-
position can handle any kind of artifact - from source code,
configurations, test cases and even documentation - though
the proof of concept and technical paper demonstrated this
for source code only [3]. Next, we describe the four cycles

and their two basic building blocks by means of an abstract
example shown in Figure 2.

A. Initialization

This first step initializes the knowledge base with existing
product variants.

Input: Variants. As input, it takes an arbitrary number of
existing product variants. A product variant should consist of
a list of features it implements (this list is arbitrarily definable)
and its implementation artifacts (e.g. source code, test code,
documentation, or configuration). Note that determining the
features for product variants is not in the scope of this work.
We assume that they are already known. As an example,
consider a drawing application portfolio which supports three
product variants 1 in Figure 2. The three initial product
variants have features for drawing shapes and also a feature
for coloring them. The first variant shown at the top left
corner contains features LINE , CIRCLE and RECTANGLE

. The second variant in the middle has features LINE ,
TRIANGLE and COLOR

R
G
B and the third variant has features

LINE , CIRCLE and TRIANGLE . The product variants
also have implementation artifacts (not shown in the figure).

Process: Traceability Extraction. The extraction 2 com-
pares the features and artifacts of any two input product
variants to determine their commonalities and differences. For
example, one rule says that if two products have features in
common then it is presumed that the artifacts they have in
common trace to these features (i.e. these artifacts implement
these features). Moreover, the extraction has rules to recognize
feature interactions [4]. For example, there is an interaction in
the implementation between feature COLOR and feature LINE

and TRIANGLE because some portion of their implementation
changes when their lines have to be colored. Furthermore,
it extracts dependencies among the features (e.g. feature
RECTANGLE requires feature LINE to draw its sides). Finally,
it extracts dependencies among the artifacts (e.g. a method
requires the class who owns it) and their ordering (e.g. the
statement order in a method matters). All this information is
stored in the knowledge base. The extraction works best if the
variants implement the features consistently. If, for example,
two variants share a feature but this feature was implemented
by two different development teams then the implementations
would likely differ widely and our approach would fail. Our
approach presumes that features are only ever implemented
once and then reused across variants. In this case, our approach
would recognize implementation cloning as shared features.

Result: Knowledge Base. The result of the extraction is
the knowledge base 3 .

B. Construction

The construction uses the knowledge base to either re-
compose existing product variants or to compose new product
variants with new features or feature combinations.

Process: Composition. The composition 4 5 is to a
greater extent the reverse process of the extraction. It merges
extracted fragments together based on selected features. It

R
G
B

1

2

3

2

3

1

Variants Traceability Extraction (Batch)

Knowledge Base

- Features

- Interactions

- Dependencies

- Order

Initialization

commonalities/differences of existing

variants are stored in the Knowledge

Base

Composition

4

Partial New Variant

+ Hints

missing

interaction

new feature

and interactions

Traceability Extraction (Inc)

4'

Extension

Partial variants are completed by

manually adding missing features and

interactions. Added information is then

extracted back to the Knowledge Base

Human

Composition
Updated Variants

2'

Modification

The Knowledge Base is updated and

all affected, existing product variants

are re-composed (e.g. fix bug once

and propagate automatically to all

affected products)

Human

4'

Composition

R
G
B

R
G
B

R
G
B

R
G
B

R
G
B

R
G
B

1

2

3

Variants

R
G
B

R
G
B

R
G
B

R
G
B

R
G
B

R
G
B

New Complete Variant

Construction

Initial product variants are re-composed

and new partial product variants are

composed

Knowledge Base’

Knowledge Base’’

1 2

3

4

5

6

7

8

9

10

11

12

13

Fig. 2: Example Sequence

takes into account not only the single features that were
selected but also their interactions, dependencies, and ordering.

Result 1: Existing Variant. When selecting sets of features
for the composition of product variants 6 that already existed
in the input products then all the necessary information to
compose these variants will be available in the knowledge
base. In such a case, the product variants are composable fully
automatically. This is useful when the initial product variants
are not stored separately (as in classical SPLs) or are evolved
later (see Modification in II-D).

Result 2: New Variant. The most important application of
our approach is the ability to compose new product variants
in part/full out of features from previously existing product
variants. For example, consider composing a new product
7 with the previously known features LINE, RECTANGLE,
COLOR and the new feature CURVE . Our approach first
automatically composes the three known features by taking
them from the knowledge base. Even though these features
existed before, RECTANGLE and COLOR never appeared together
in a single product variant. Hence the feature implementations
may be known but not necessarily all relevant feature inter-
actions (e.g. is the coloring of a rectangle different from the
coloring of a line?). The composition thus computes a list of
potentially missing feature interaction. Also for new features,
such as CURVE, there is no knowledge to be exploited. For
such missing features, the composition also provides hints.
A human is then expected to finalize these partial product
variants. These partial products get better the more product
variants already exist.

C. Extension

Our approach expands its knowledge base with every new
product variant. A manually finalized product variant 8
can and should be extracted back into the knowledge base,
thus effectively evolving the knowledge base, to enable future
compositions to reuse new features and interactions.

Input: New Finalized Variant. Based on the hints provided
by the automated composition process (e.g. about missing
features and feature interactions or violated dependencies
between fragments) the software engineer can complete the
new product variant 8 .

Process: Traceability Extraction. Here, the extraction
9 follows an incremental model that uses the traceability

information in the knowledge base as input and compares it
with the new product variant to update and refine the stored
traces. By using the new completed variant 8 as input
for the extraction, we obtain knowledge about the feature
CURVE and the interaction between features RECTANGLE and
COLOR. As was mentioned earlier, the extension is not just an
incremental form of the initialization but may be complicated
by evolutionary changes between variants. Imagine the newly
composed variant above also improved how lines are drawn.
There are thus two versions of the feature LINE and without
additional guidance, the extraction might confuse LINE with
the new feature CURVE. In practice, we find companies do
understand changes in product variants - especially if they are

documented immediately and extracted as proposed on our
approach.

Result: Knowledge Base. The result of this extraction is an
evolved knowledge base 10 which now contains, in addition
to the previously extracted information, the CURVE feature
and additional feature interactions. It may even be desired
to maintain different versions of a feature. For example, an
existing customer may not be issued a more efficient version
of LINE without paying for it but perhaps an existing customer
would be issued bug fixes to features.

D. Modification

Lastly a software engineer can manually evolve the knowl-
edge base (e.g. to apply a bug fix to a feature/artifact) and then
propagate the changes to all affected variants by automatically
re-composing them. This avoids having to apply the same
change to all the affected variants separately.

These manual modifications can either be performed di-
rectly on the knowledge base or by means of a special product
variant to which the changes are applied and which is then fed
back through the extraction to update the knowledge base.

Input: Knowledge Base. For example, consider a change
to feature TRIANGLE in combination with feature COLOR (a
feature interaction) that allows not only to color the edges,
but also to fill the triangle with a color. A software engineer
can identify the features and interactions responsible for this
functionality using the knowledge base and manually adapt
the implementation in the knowledge base 11 .

Process: Composition. Subsequently all the affected prod-
uct variants 13 can be automatically determined and re-
composed 12 using the updated knowledge base 11 .

Result: Updated Variants. Here only product variant 2 had
to be updated 13 . Had there been more variants implementing
the affected features and feature interaction then all those
variants would be re-computable instantly.

III. PROOF OF CONCEPT & EVALUATION

To demonstrate the basic feasibility of our approach, we
built a proof-of-concept tool that was successfully applied
on five case studies ranging from 12 to 256 variants with
up to 344 KLOC in code size. In our evaluation we used
a random subset of the available product variants for each
case study as input to the extraction (a subset of the 12 to
256 variants) and subsequently composed all its remaining
variants, and computed precision and recall to determine
artifacts surplus or missing respectively. We found that less
than 20% of the existing product variants as input allowed
for the near optimal construction of new product variants (the
other 80% of available products, that were reconstructed by
reusing existing functionality). But even before these 20% of
possible product variants are reached the approach is useful
in providing reusable artifacts for new product variants. Our
proof-of-concept is currently limited to Java only, and focused
on two of the four cycles discussed here. The details of this
evaluation and the two cycles are published in [3].

IV. RELATED WORK

Rubin et al. proposed a conceptual framework for managing
product variants that are the result of clone-and-own practices
[5]. They outlined a series of operators that described the set
of processes and activities to manage software variants in the
different scenarios they encountered in their case studies. The
extraction and composition processes presented in this work
could be seen as an actual implementation of some of their
proposed operators. However, our work proposes a work flow
for how our operations could be used for different purposes,
like evolution and maintenance.

There are several other traceability and information mining
algorithms as for example presented by Capobianco et al. in
[6] or by Kagdi et al. in [7]. Ziadi et al. propose an approach
for identifying features through differences in product variants
[8]. The difference to our work is that Ziadi et al. work on a
model as product abstraction and do not map features directly
to source code as proposed in this work, which also leads to
a different level of granularity of their mapping.

V. CONCLUSIONS

We presented an approach for constructing and evolving
software product portfolios. It provides automated reuse of
existing arbitrary development artifacts and supports software
engineers during the maintenance and evolution of product
portfolios. The approach extract traces from system variants
that map features and feature interactions to their implemen-
tation artifacts. Based on these traces four usage cycles are
proposed. A proof of concept evaluating five case studies for
two of the four cycles demonstrated the feasibility of our
approach in principle. We are currently applying this work
on two industrial case studies and future work will focus on
exploring more heterogeneous development artifacts.

ACKNOWLEDGMENTS

This research was funded by the Austrian Science Fund
(FWF) projects P25289-N15 and P25513-N15.

REFERENCES

[1] G. Botterweck and A. Pleuss, “Evolution of software product lines,” in
Evolving Software Systems, 2014, pp. 265–295.

[2] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R. Lämmel,
S. Stanciulescu, A. Wasowski, and I. Schaefer, “Flexible product line
engineering with a virtual platform,” in ICSE Companion, 2014, pp. 532–
535.

[3] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Enhancing
clone-and-own with systematic reuse for developing software variants,”
in ICSME, 2014, pp. 391–400.

[4] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Recovering trace-
ability between features and code in product variants,” in SPLC, 2013.

[5] J. Rubin, K. Czarnecki, and M. Chechik, “Managing cloned variants: a
framework and experience,” in SPLC, 2013.

[6] G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and S. Panichella,
“Improving ir-based traceability recovery via noun-based indexing of
software artifacts,” Journal of Software: Evolution and Process, vol. 25,
no. 7, pp. 743–762, 2013.

[7] H. H. Kagdi, M. Gethers, and D. Poshyvanyk, “Integrating conceptual
and logical couplings for change impact analysis in software,” Empirical
Software Engineering, vol. 18, no. 5, pp. 933–969, 2013.

[8] T. Ziadi, L. Frias, M. A. A. da Silva, and M. Ziane, “Feature identification
from the source code of product variants,” in CSMR, T. Mens, A. Cleve,
and R. Ferenc, Eds. IEEE, 2012, pp. 417–422.

	Introduction
	Approach Architecture
	Initialization
	Construction
	Extension
	Modification

	Proof of Concept & Evaluation
	Related Work
	Conclusions
	References

